NICE Conference and Expo 2022

JUNE 6 - 8, 2022 | WESTIN PEACHTREE PLAZA | ATLANTA, GA

DEMYSTIFYING CYBERSECURITY

Integrated Approaches to Developing Career Pathways

Signature Pedagogy in Cybersecurity: An Emerging Perspective

Ashley Gess

Program Head, Computer Science Endorsement, Augusta University Michael Nowatkowski Associate Professor and Head of the Cyber Program of Study Augusta University

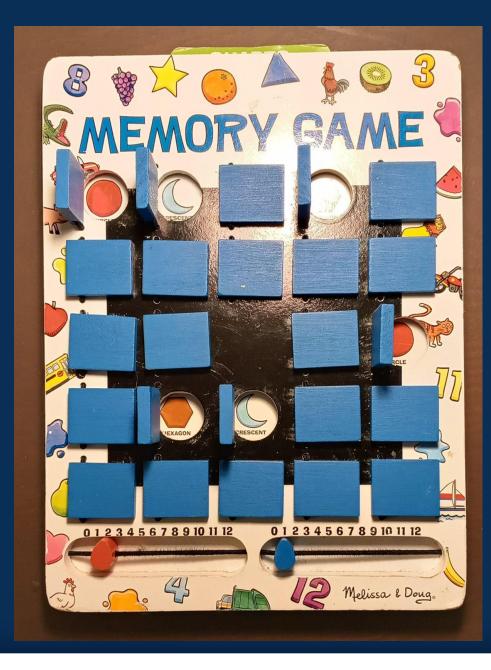
#NICECYBERCON22

Please choose an activity that most interests you as you enter.

Feel free to have fun... you have approximately 5 minutes.

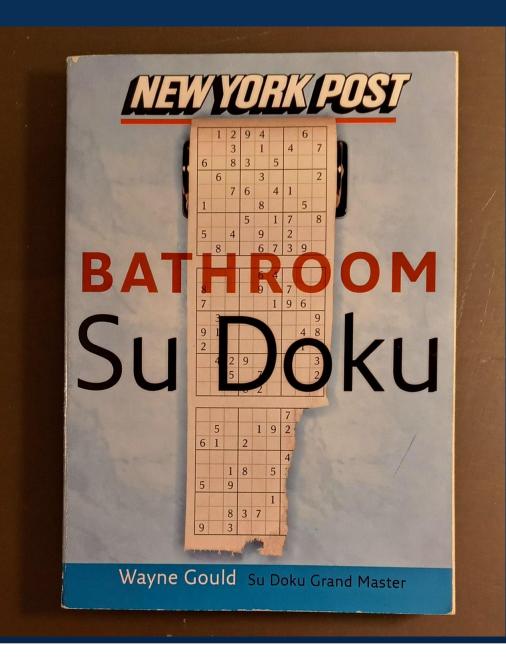
Signature Pedagogy in Cybersecurity: An Emerging Perspective

> Ashley J. Gess, PhD Michael Nowatkowski, PhD Augusta University, Augusta GA



Arduino Starter Kit

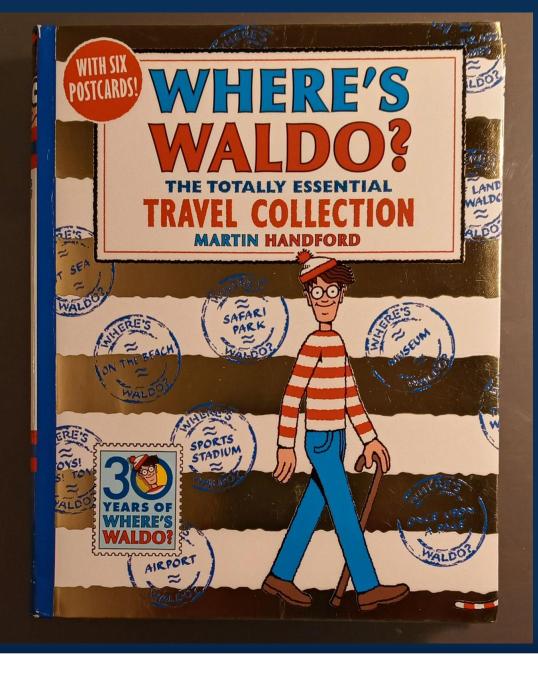
Memory Game



Peg Game

Sudoku

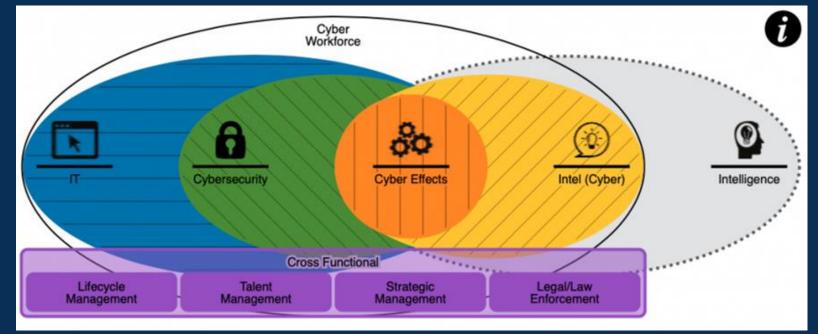
AUGUSTA UNIVERSITY


Tangoes

Where's Waldo?

Breakout Box

DaVinci Cryptex



None of the above (I just sat and waited).

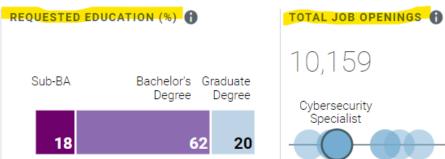
Introduction/Background

- 714,548 vacancies in the Cyber Workforce
- Broad range of talents needed
- Parallels between
 Department of Defense workforce and civilian
 workforce

Cyberspace Workforce Elements https://public.cyber.mil/cw/dcwf/workforce-elements/

Entry Level Jobs

Cybersecurity Specialist


AVERAGE SALARY

\$104,482

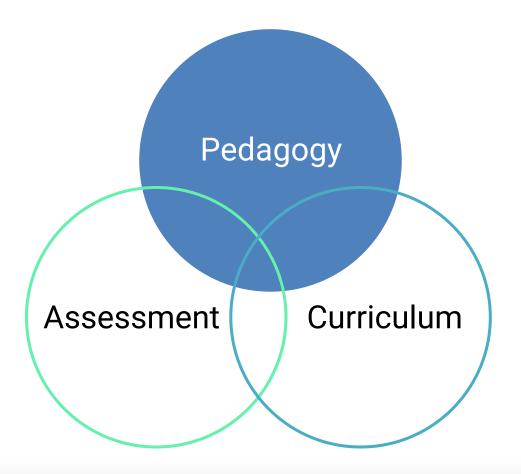
Cybersecurity Specialist

COMMON JOB TITLES

- Information Security Specialist
- Security Specialist
- Cyber Security Specialist
- Information Technology Specialist
- Operations Specialist

Entry-level Job	Openings	Sub-BA	Bach	Grad	Available Sub-BA	Bach	Grad
Cybersecurity Specialist	10159	18%	62%	20%	1829	6299	2032
Cyber Crime Analyst	1212	10%	64%	25%	121	776	303
Incident & Intrusion Analyst	9853	16%	64%	20%	1576	6306	1971
IT Auditor	8556	5%	76%	19%	428	6503	1626
total	29780	13%	67%	20%	3954	19883	5931

Current Pipeline


- Computer and Information Science (CIS) degrees in 2019
 - **169,288, of those:**
 - 31,939 Associate's degrees \rightarrow 3,954 open
 - 89,421 Bachelor's degrees \rightarrow 19,883 open
 - 45,754 Master's degrees \rightarrow 5,931 open
 - 2,174 Doctoral degrees
- How many of these are going into the Cyber Workforce?
- How do we increase the number of students interested in CIS, and specifically Cyber Workforce areas?

The Study: How to best teach Cybersecurity

What is a Pedagogy?

The teaching approaches used to help all students learn the content articulated in the curriculum.

What is a Signature Pedagogy ?

Dimensions of a signature pedagogy (See Shulman, 2005)

Dimension	Description
Surface Structure	Mastery experiences anchored in relevant content and characteristic
nrena	bel aviers around typical presentations of the pontent.
Deep Structure	Underlying "assumptions about how to best impart a certain body
think,	of knowledge and know hov? (p. 55). In other words, how to think
	like the professional when in their job context.
Implicit Structure	S A moral dimension that comprises a set of beliefs about
	professional attitudes, values and dispositions"(p. 55). In other
	words, how do professionals behave among each other when
	engaging in their work?

Research Questions

RQ1: How do Cybersecurity professionals think and act when engaging in their profession?

RQ2: How can primary and secondary education professionals develop learners that think and act like Cybersecurity professionals?

Sample	Data Source	Analysis
Cybersecurity professionals n=125	 Likert style survey Quantitative: Cybersecurity profession questions Cybersecurity teaching questions Demographics 	 Descriptive statistics Measure of frequencies and central tendencies
Cybersecurity professors n=8	Focus group	 Inductive coding Interrater reliability of greater than 80% Member checking
Cybersecurity professionals n=2	Interview	 Inductive coding Interrater reliability of greater than 80% Member checking

Research Method and Analysis

Cybersecurity Professionals' Skills

Adapting	Persistence		Evaluating	
Analytical Thinking Building	Problem Finding	Experimenting	Predicting Improving	
Collaboration	Problem Solving		Improvising	
Computational Thinking Creative Thinking Critical Thinking	Individuality	Innovating Knowing	Reflection	Resilience
Curiosity	Synthesizing		Making	
Data Gathering Thinking Designing		Memorizing	Mentoring	Systems
Design Thinking Ethical Considerations	Understanding Open-mindedness	Metacognition	Visualizing	

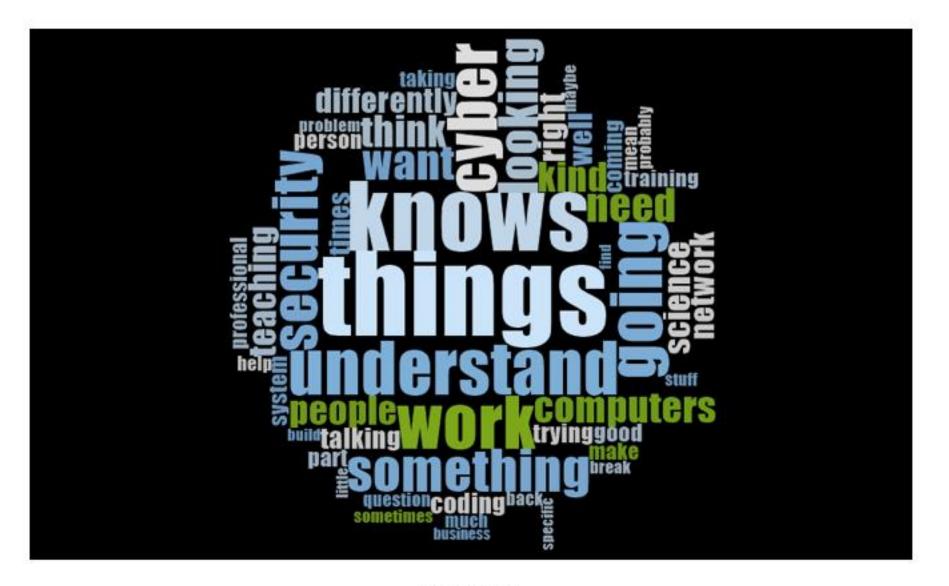
Cybersecurity Professionals' Skills

Adapting	Persistence		Evaluating	
<mark>Analytical Thinking</mark> Building	Problem Finding	Experimenting	Predicting Improving	
Collaboration	Problem Solving		Improvising	
Computational Thinking Creative Thinking <mark>Critical Thinking</mark>	Individuality	Innovating Knowing	Reflection	Resilience
Curiosity	Synthesizing		Making	
Data Gathering Thinking	o yntheol2mg	Memorizing		Systems
Designing	Understanding		Mentoring	
Design Thinking Ethical Considerations	Open-mindedness	Metacognition	Visualizing	

Cybersecurity Professionals' Skills

Adapting	Persistence		Evaluating	
<mark>Analytical Thinking</mark> Building	Problem Finding	Experimenting	Predicting Improving	
Collaboration	Problem Finding		Improvising	
Computational Thinking Creative Thinking <mark>Critical Thinking</mark>	Individuality	Innovating Knowing	Reflection	Resilience
Curiosity	Resourcefulness Synthesizing		Making	
Data Gathering Thinking		Memorizing		Systems
Designing	Understanding		Mentoring	
Design Thinking Ethical Considerations	Open-mindedness	Metacognition	Visualizing	

Teaching approaches reported by Cybersecurity Educators


Case Studies			Interactive Lectur	re/Discussion
Class Discussion Project	Research Paper	Interview of CY P	rofessional	Research
Coaching			Investigative Rese	earch Projects
	Research Present	ation		
Exams				Lecture Role Play
Games			Media Clips	,
			Self Assessment	
Group Projects		Modeling		
		Service Learning		
Group Presentation	ons		Peer Evaluation	
Guest Speakers	AUGUSTA UNIVERSITY	Simulation Peer Teaching		

Teaching approaches reported by Cybersecurity Educators

Case Studies			Interactive Lectur	e/Discussion
	Research Paper			Decemb
Class Discussion Project		Interview of CY P	roressional	Research
Coaching			Investigative Rese	earch Projects
	Research Present	ation		
Exams				Lecture
				Role Play
Games			Media Clips	
			Self Assessment	
Group Projects		Modeling		
. ,		Service Learning		
Group Presentation	ons		Peer Evaluation	
Guest Speakers	UGUSTA UNIVERSITY	Simulation Peer Teaching		

Teaching approaches reported by Cybersecurity Educators

Case Studies			Interactive Lectur	e/Discussion
Class Discussion Project	Research Paper	Interview of CY P	rofessional	Research
Coaching	Decease Duccast		Investigative Rese	earch Projects
Exams	Research Present	ation		<mark>Lecture</mark> Role Play
Games			Media Clips <mark>Self Assessment</mark>	
Group Projects		Modeling Service Learning		
Group Presentation	ons		Peer Evaluation	
Guest Speakers	UGUSTA UNIVERSITY	Simulation Peer Teaching		

Combined

Conclusions: Surface Structure

"concrete, operational acts of teaching and learning..."

- Demonstration watch one, do one.
- Provide freedom to explore, try new ways to solve.
- Work in teams.
- Safe environment to experiment (lab access to try stuff).
- Authentic environment
- Play

Conclusions: Deep Structure

"how best to impart a certain body of knowledge and know-how."

- Case studies discuss what happened, how to prevent it.
- Hands-on/Minds-on labs can't just watch, students must do.
- Present challenges that may have multiple solutions.
- Opportunities to connect with in practice professionals
 Externship ->Internship (mentor & sponsor)->Apprenticeship

Conclusions: Implicit Structure

"set of beliefs about professional attitudes, values, and dispositions."

- Ethical have to ask permission if you don't own it.
- Trust
- Persistence
- Try it break it; Try it-Fail-Try again

Conclusions

- 1. Lively mind is unique and pervasive
- 2. Cybersecurity professionals are bricoleurs
 - One who engages in bricolage
 - One who creates from a diverse range of things

Conclusions

- 1. Lively mind is unique and pervasive
- 2. Cybersecurity professionals are bricoleurs
- 3. The pipeline is waning because we are relying on natural proclivities.
- 4. Interest needs to be cultivated intentionally through pedagogy that helps to develop #1 and #2.
- 5. Divide between profession and education is deep and persistent across P-16

Implications for Overall Education

- 1. Don't bore students
- 2. Intentional Hands-on/ Minds-on must be planned where demonstrating skills
- 3. Experiential learning
- 4. Guided Externship, internship, apprenticeship
- 5. Adopt an integrative STEAM educational approach

Integrative STEAM educational approach

An approach to teaching where the teacher intentionally plans for students to apply the content and practices of science and mathematics through the design process with outcomes in either engineering, technologies, or arts.

Questions?

Michael Nowatkowski mnowatkowski@augusta.edu

Ashley Gess agess@mailbox.sc.edu

AUGUSTA UNIVERSITY

NICE Conference and Expo 2022

JUNE 6 - 8, 2022 | WESTIN PEACHTREE PLAZA | ATLANTA, GA

DEMYSTIFYING CYBERSECURITY

Integrated Approaches to Developing Career Pathways

Attracting Tomorrow's Cybersecurity Talent Today

Tambre Paster Cyber System Security Engineer, Senior Staff/Associate Fellow Lockheed Martin Aeronautics

#NICECYBERCON22

Attracting Tomorrow's Cybersecurity Talent Today

2022 NICE Conference and Expo

Atlanta, GA

Tambre Paster

Cyber Systems Security Engineer/Associate Fellow

Lockheed Martin Corporation

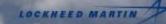
Missiles and Fire Control

- Air and Missile Defense
- Tactical Missiles and Fire Control
- Combat Maneuver Systems
- Energy

Space Systems

- Surveillance and Navigation
- Global Communications
- Human and Deep Space Exploration
- Strategic and Defensive Systems

Aeronautics


- Tactical Fighters
- Tactical /Strategic Airlift
- Advanced Development Programs
- Sustainment Operations

10

Rotary and Mission Systems

- Maritime Solutions
- Radar and Surveillance Systems
- Aviation Systems and Rotorcraft Platforms
- Training and Logistics Solutions

Lockheed Martin Cybersecurity Camp

What: Two full-day events packed with an agenda of fun interactive activities, lectures, and demos that taught students principles of cybersecurity.

Top-Level Goals: Educate and Impact

- Increase awareness of cybersecurity as an area of importance and as a career opportunity and develop interest among high school students.
- inspire students to pursue careers in Cyber and STEM and come work for Lockheed Martin in the future
- Encourage students to go study it on their own.

LOCKHEED MARTIN

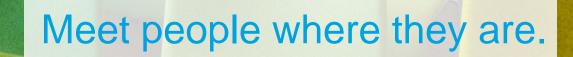
Established: July 2019

"It was clear that everyone here really loves their job and cares about the campers. I would love to come back!"

"I really loved this camp! I learned a lot of valuable information about cybersecurity."

'IN

"I'll be back in 6 years as a LM employee"


"Each activity & presentation was fun to participate

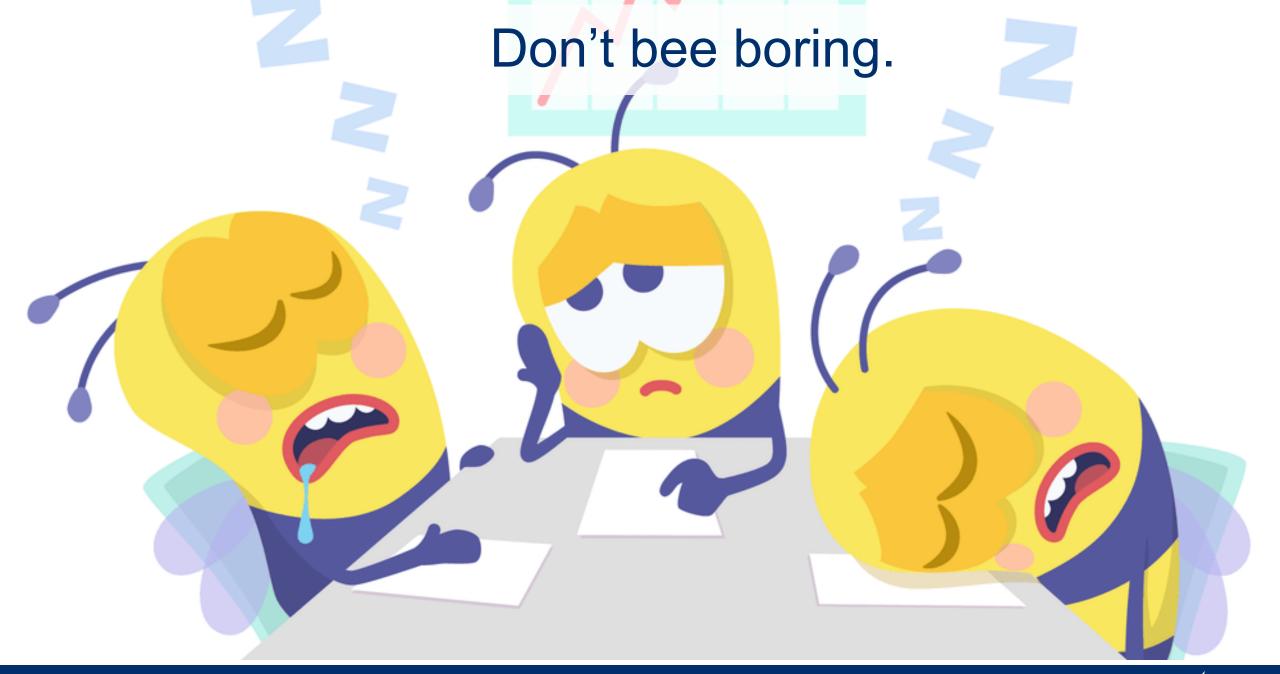
LOCKHEED MARTIN 44

45

What do you see?

Before

Can you spot the difference?



CRYPTO VR[™] Challenge

The Crypto VR[™] Challenge is an fun, educational experience in which players are immersed in an intense, virtual scenario that requires teamwork and ingenuity for mission success.

This a creative, original outreach tool developed by the a small group of Cyber Camp volunteers.

OWL114

- NIGHT/THERMAL IMAGINI
- SILENT FLIGHT
- FLIES AUTOMATIC AND MANUAL
- VIDEO AND STILL CAPTURE
- FLIES DURING INCLEMENT WEATHER

nput

82 44 54 68 57 71 2

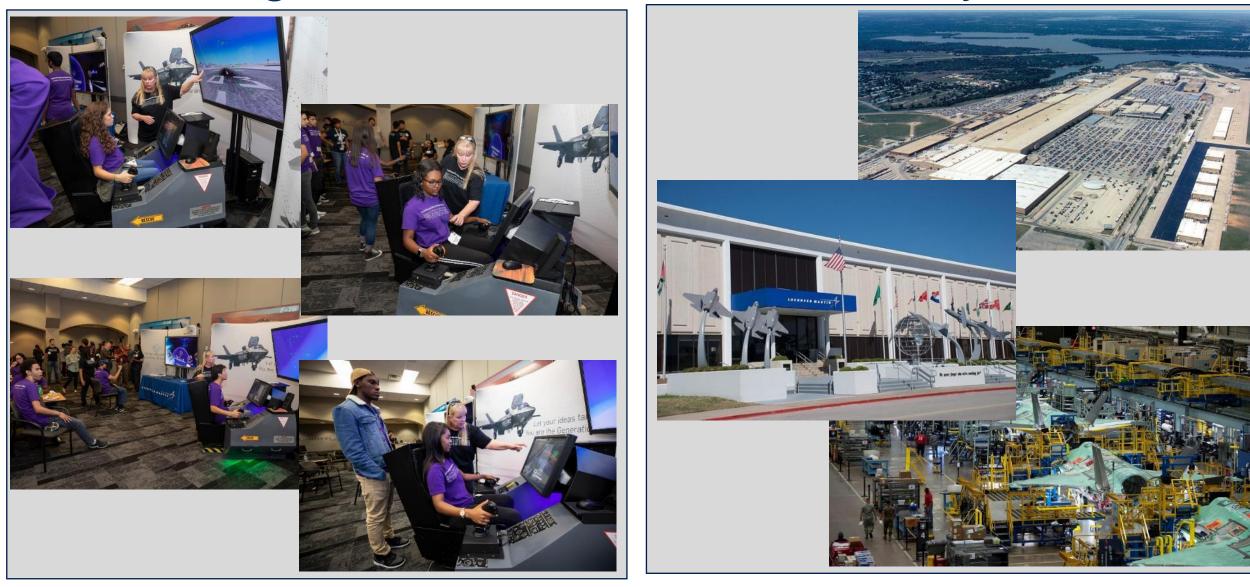
LOCKHEED MARTIN

CRYPTO VR[™] Challenge

It takes a village.

Welcom to the Lockheed Mari Aeronautics Cybersecurity

© 2022 Lockheed Martin Corporation. All Rights Reserved.


53

F-35 Flight Simulator

Factory Tour

Don't give up.

56

Cybersecurity Summer Camp

Sometimes watching your six starts with 1s and 0s.

Session Description

With the demand for Cybersecurity professionals continuing to outpace supply, organizations are looking for creative measures to close workforce gaps. This session will focus on one company's philosophies and tactics for activating the next generation of Cyber professionals. Listen in on the journey to attract and prepare tomorrow's Cyber defenders through Lockheed Martin's first high school Cybersecurity Camp, as told by the lead Cyber Camp developer. This session may be right for you if you are looking for ideas to build your organization's pipeline or need a spark of inspiration to jumpstart your Cyber outreach efforts. This session is designed to inspire those who desire to inspire others.

Building the Cybersecurity Pipeline - 45 minutes - Wed. June 8

NICE Conference and Expo 2022

JUNE 6 - 8, 2022 | WESTIN PEACHTREE PLAZA | ATLANTA, GA

DEMYSTIFYING CYBERSECURITY

Integrated Approaches to Developing Career Pathways

Networking Break: Transform Learning Process

Mike Morris Associate Dean Cybersecurity Western Governors University (WGU)

#NICECYBERCON22

NICE Conference and Expo 2022

JUNE 6 - 8, 2022 | WESTIN PEACHTREE PLAZA | ATLANTA, GA

DEMYSTIFYING CYBERSECURITY

Integrated Approaches to Developing Career Pathways

Integrating Emergency Management Principles into Cybersecurity Education

Markus Rauschecker

Cybersecurity Program Manager University of Maryland Center for Health and Homeland Security

Ben Yelin

Program Director, Public Policy & External Affair University of Maryland Center for Health and Homeland Security Netta Squires Senior Law and Policy Analyst University of Maryland Center for Health and Homeland Security

FICTIONAL INTERNATIONAL UNIVERSITY

#NICECYBERCON22

CHHS> UNIVERSITY OF MARYLAND CENTER FOR HEALTH & HOMELAND SECURITY

Integrating Emergency Management Principles into Cybersecurity

Netta Squires, JD, CEM, MSL Markus Rauschecker, JD Ben Yelin, JD

Presentation Outline

- 1. Where emergency management fits in the NICE Framework
- 2. Defining Emergency Management
- 3. Practical uses
- 4. Recommendations and examples
- 5. Free training resources

NICE Framework

Task, Knowledge, Skills (TKS)

Strategic Planning and Policy

Risk Management

Legal Advice and Advocacy

Cybersecurity Management and Executive Leadership

Emergency Management

- Coordination
- Collaboration
- Communication
- Wholistic Approach
 - Mitigation
 - Preparedness
 - Response
 - Recovery

Cybersecurity as an "emergency"

- Baltimore City ransomware attack
- Colonial pipeline
- Kronos ransomware attack

The Intersection

- All hazard
- Cyber = threat
- Consequence management
- Education

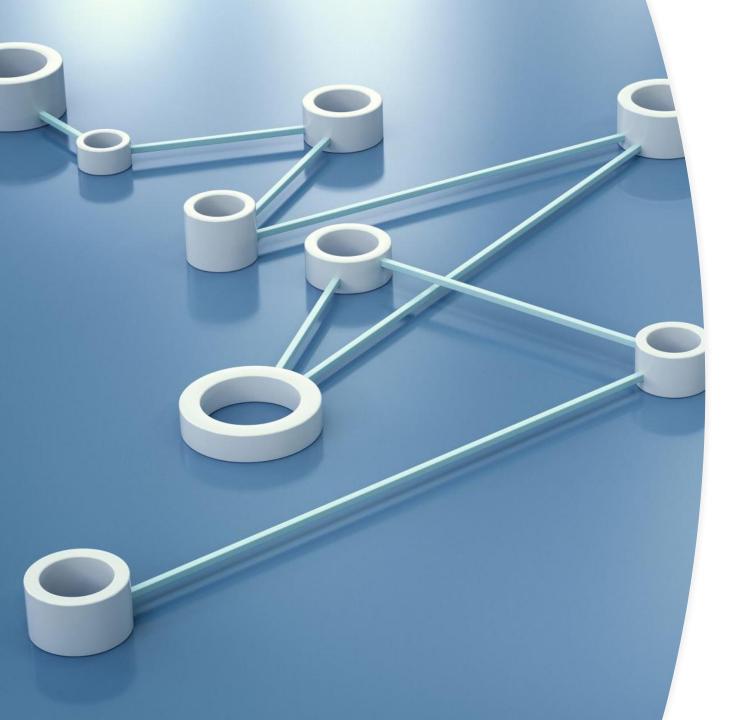
What can Emergency Management principles do for you?

This Photo by Unknown Author is licensed under <u>CC BY-ND</u>

American Red Crass

Left of Boom

- Threat and Hazard Identification Risk Assessment
- Bring all the relevant partners to the table
- Make a plan
- Write the Plan
- Train
- Exercise
- Revise the plan
- Suggest and draft policies and guidelines


Dooms Day

- Activate plans
 - Response plans
 - COOP plans- MEF
- Open an Emergency Operations Center (EOC)
- Alternate communication methods, Web EOC, Radios, etc
- Coordinate response

Right of Boom

- Coordinate recovery
- Coordinate resources local, state, feds
- Request an emergency declaration
- Write Incident Action Plan (IAP)
- Provide Situation Reports (SitReps)
- Public information and warnings / alert systems (PIO)
- After Action Reports (AARs)/ Improvement Plan (IP)

Recommendations

- Incorporate EM Principles into Cybersecurity Curricula (Part of a Horizontal education framework).
- Incorporate into all levels of higher education
- Teach in a wholistic approach

Opportunities and Examples

- Undergraduate
 - 100 Level Course in EM Principles
- Graduate Programs
 - Specialized courses in specific emergency management topics (incident command etc., law & policy)
- Professional
 - CISA
 - EMI

Existing Resources

• Free Online FEMA Trainings

- 1. <u>IS-230.E: Fundamentals of Emergency</u> <u>Management</u>
- 2. IS-235.C: Emergency Planning
- 3. <u>IS-100.C: Introduction to the Incident</u> <u>Command System, ICS 100</u>
- 4. <u>IS-700.B: An Introduction to the</u> <u>National Incident Management System</u>
- 5. IS-120.C: An Introduction to Exercises

Key Takeaways: Emergency Management and Cyber Education

- 1. Cyber Security is not only an IT issue
- 2. A key goal of cyber education is to gain institutional knowledge to prepare for, and respond to, cyber incidents.
- 3. Emergency Management can help you improve your preparedness, response, and recovery from a cyber attack/ event

NICE Conference and Expo 2022

JUNE 6 - 8, 2022 | WESTIN PEACHTREE PLAZA | ATLANTA, GA

DEMYSTIFYING CYBERSECURITY

Integrated Approaches to Developing Career Pathways

